
Part of series: PS
11376 BOJ
문제
접근
이분 매칭을 이용해 해결하였다.
이분 매칭은 처음이라서 다른 분들의 풀이를 많이 참고하여 해결하였다.
코드
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll> pll;
typedef pair<ull, ull> pull;
typedef const ll cll;
typedef queue<ll> qll;
typedef queue<pll> qpll;
typedef priority_queue<ll> pqll;
typedef priority_queue<pll> pqpll;
typedef vector<ll> vll;
typedef vector<pll> vpll;
typedef vector<vll> vvll;
typedef vector<vpll> vvpll;
#define FOR1(a, A) for (ll a = 0; a < A; ++a)
#define FOR2(a, b, A, B) \
for (ll a = 0; a < A; ++a) \
for (ll b = 0; b < B; ++b)
cll N = 1000, M = 1000;
ll n, m, emplys[M + 1] = {};
vll jobs[N + 1];
bool avail(ll emply, vector<bool> &check) {
if (check[emply]) {
return false;
}
check[emply] = true;
for (auto &job : jobs[emply]) {
if (!emplys[job] || avail(emplys[job], check)) {
emplys[job] = emply;
return true;
}
}
return false;
}
int main(void) {
ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin >> n >> m;
for (ll njob, e = 1; e <= n; ++e) {
cin >> njob;
jobs[e].resize(njob);
for (ll i = 0; i < njob; ++i) {
cin >> jobs[e][i];
}
}
ll result = 0;
for (ll e = 1; e <= n; ++e) {
for (ll i = 0; i < 2; ++i) {
vector<bool> check(n + 1, false);
result += avail(e, check);
}
}
cout << result << "\n";
return 0;
}